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The effect of various co-solvents on silicon carbide growth from solutions is sequentially 
analyzed within computational approach. The information related to the problem is col-
lected from available literature and thoroughly treated. Boundary between liquid and 
solid state of solutions (liquidus line) is found from phase diagrams of 11 binary systems 
and is accounted for in calculating the carbon solubility at temperature and composition 
varying in a wide range. Thermophysical and transport properties are collected for pre-
liminary estimation and comparison of growth rates. Their saturation with co-solvent 
percentage is predicted. Two-dimensional problem is set and first computations are 
demonstrated. It is shown that addition of lanthanum to the silicon melt gives a signifi-
cantly higher growth rate than that of chromium. 
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1. INTRODUCTION 

The superior physical properties of silicon carbide (SiC) 
provide an equivalent replacement of silicon for high power 
and high-temperature electronics. These advantages allow 
us to hope that the industry could completely replace silicon 
in devices by SiC in the future. SiC technologies have made 
tremendous strides in last years, with a variety of encourag-
ing device and circuit demonstrations. 

Some effective techniques for producing the SiC crys-
tal of high quality have been developed. Among them, SiC 
top-seeded solution growth (TSSG) method turns out to be 
a worthy opponent to such methods as the physical vapor 
transport (PVT) and the high temperature vapor deposition 
(HTCVD). However, when using the pure silicon melt, 
only a low growth rate can be achieved due to low carbon 
solubility. To enhance it, several co-solvents are added re-
cently. Comprehensive review of the topic is presented in 
Ref. [1]. Let us emphasize main features here. Solution 
growth is a standard technology for preparing compound 

semiconductors [2]. For solution growth of SiC single 
crystal by TSSG, the Si source stems from highly pure Si 
melt while the graphite crucible serves dual purposes: 
heater and C solute source. SiC single crystals are more 
likely to grow under the ideal stoichiometric ratio when 
the ratio of C and Si is close to 1, indicating a lower defect 
density [3]. The driving force of the growth is the C super-
saturation that is dominated by temperature gradient and 
solution system. There is a generally accepted viewpoint 
that the higher the C supersaturation, the faster the growth 
rate, while low C supersaturation produces a smooth sur-
face [4]. Doping transition metal elements or rare-earth el-
ements not only effectively lower the growth temperature 
but seems to be the only way to drastically improve carbon 
solubility in Si melt [1]. To date, 4-inch SiC substrates 
with a thickness of 15 mm have been grown by TSSG 
method, while substrates of 6 inches and larger are still in 
progress. Multi-parameters of the solution growth includ-
ing meniscus, solvent design, flow control etc. make high-
quality single crystal growth possible. 
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Note that the appearance of defects, the unintentional 
doping of crystals by fluxes and other parameters of as-
grown crystals are shelved within the present paper. To 
investigate them properly, a specific tool should be used. 
The present paper sets a more limited problem to reveal 
and to compare the effect of such co-solvents as Cr, Fe, 
Co, Ni, Y, Al, La, Ce, Pr, Nd and Sc only on numerical 
values of the carbon solubility and the SiC growth rate de-
pending on process conditions. Uniformity of the growth 
rate distribution on the seed surface is planned to analyze 
within 2D approach for estimating the morphology in fur-
ther parts of the paper. To solve the limited problem, the 
thermodynamics of non-ideal solutions is applied for cal-
culating the carbon solubility and the SiC growth rate is 
evaluated from the carbon flux onto the seed. In addition, 
the author does not aim here to reproduce all available ex-
periments due to the fact that none of models can do it. 
Nevertheless, the collation of various liquid alloys within 
a reasonable approach can help one to catch main trends 
and features of the considered technology. 

2. PRELIMINARY ANALYSIS 

2.1. Liquidus lines of binary system Si-Me, Me = Cr, 
Fe, Co, Ni, Y, Al, La, Ce, Pr, Nd and Sc 

Silicon melt is known to be a source of Si-atoms involved 
in SiC TSSG and acts as a basic solvent with melting point 
of 1685 K [1]. Obviously, the process using the pure sili-
con should be run at temperatures higher than this thresh-
old value. The temperature limitations for solutions addi-
tionally depend on co-solvent percentage and are 
represented as phase diagrams calculated from measure-
ments and separating the liquid and solid states. Therefore, 
before any analysis it is useful to get exhaustive infor-
mation on when the silicon diluted with one of co-solvents 
or their composition remains liquid. 

Solid-liquid phase diagrams of binary solutions listed 
above were found in available literature [5–15] and 
treated. As a result, the corresponding liquidus lines were 
plotted in Fig. 1 to compare them against each other and 
to clear up the applicability of one or another solution. 
As seen from the plots, the threshold temperatures vary 
nonmonotonically and differently with mole fraction of 
considered co-solvents or fluxes. Melting point of all so-
lutions with doping up to 20–30 mol.% becomes lower 
than that of the pure silicon. After that, with the excep-
tion of Si-Al (solid blue) and Si-Ni (long dashed red), 
liquidus temperatures sharply rise especially in the case 
of lanthanides, Y and Sc. It means that the temperature 
should be elevated significantly for keeping the solution 
in liquid state at the co-solvent fraction varying from 30 
to 70 mol.% 

Note that being close to each other, Si-lanthanide liqui-
dus curves (purple) reach a maximum somewhat lower 
than 2100 K at ≈ 35 mol.% and decrease to 900–1100 K 
at ≈ 90 mol.%. Most severe temperatures of 2100–2400 K 
are observed for Si-Y (dashed red) and Si-Sc (solid black) 
at 50% Y and 60% Sc, respectively, going down to 1600 K 
at ≈ 90 mol.%. 

Si-Cr liquidus (solid red) increases between melting 
points of solvents with weekly pronounced local maxi-
mums and minimums. Ni-doping provides the threshold of 
1300 K at 40–55% Ni. Si-Fe (dashed dot dot red) and Si-
Co (dashed dot red) systems show similar dependences 
without some apparent features. 

Unlike others, only Si-Al system exhibits the classical 
behavior with the single eutectics at ≈ 87% Al. 

The information above is collected in Table 1 and can 
be used for a preliminary selection of co-solvents, provid-
ing the liquid binary solutions. Moreover, the temperature 
limitations are further accounted for in calculating the car-
bon solubility and the SiC growth rate. 

2.2. Thermodynamic background 

For describing the SiC crystal growth from multi-compo-
nent solutions, one should formulate the boundary condi-
tions containing the carbon solubility. To evaluate it at 
temperature and solvents composition varying in a wide 
range, the well-known relations of thermodynamics are 
applied [16]. Assuming that the SiC crystal dipped into Si-
Me solution partly dissolves producing the carbon through 
the chemical reaction 

( ) ( ) ( ) ,liquid dissolved solidSi C SiC+   (1) 

Fig. 1. Liquidus-solidus of Si-Me alloys, where Me = Cr, Fe, Co, 
Ni, Y, Al, La, Ce, Pr, Nd, Sc. Regions of liquid phase are located 
higher than liquidus curves. 
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one can write the following equilibrium condition in com-
mon case 

( ) ( )( ) ( ) ( )ln ln ,l l s
Si Si Si C C C SiCRT x RT xγ + µ + γ +µ = µ  (2) 

where iγ , ix  and ( , )l s
iµ  are the activity coefficient, the 

equilibrium mole fraction and the standard Gibbs’ en-
ergy of i-th component, respectively; R is the gas con-
stant in J∙kmole–1·K–1, T is the temperature in Kelvin. To 
find the activity coefficients, the thermodynamics of 
non-ideal solutions [16] considers the total Gibbs’ en-
ergy describing the state of a system as a whole: 

( ) ( )

1
ln ,

cN
l

i i i i
i

G x RT x
=

 = γ + µ ∑  (3) 

where cN  is the total number of components including the 
carbon. Then the deviation from ideal solution, the excess 
Gibbs’ energy exG∆ , can be extracted from Eq. (3) as 

1
ln .

cN
ex

i i
i

G x RT
=

∆ = γ∑  (4) 

Eq. (4) gives the relation of activity coefficients, iγ , 
and exG∆ . Normally, the latter is approximated as 

1

1 1
,

C CN N
ex ex

i j
i j i

G G
−

−
= = +

∆ = ∆∑ ∑  (5) 

where ex
i jG −∆  is the excess Gibbs’ energy of (i – j)-system 

containing the parameters of interaction between compo-
nents i and j. Their most reliable values resulted from 

treating many measurements are found in available litera-
ture [17–32] and collected in Table 2. Using them, the ac-
tivity coefficients iγ  as functions of mole fractions ix  are 
expressed from Eq. (4) added by the Gibbs’–Duhem rela-
tions [16]. Then common formulae are derived for arbi-
trary composition 

( )
1

1

1 1

1 1
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ln , 1 .

c
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N Nex
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i jGi N RT G x
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−
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− −

= =

 =∂∆
= − γ = ∆ + δ − δ =  ≠∂ 


∂∆ γ = ∆ − = − ∂

∑

∑ ∑

 (6) 

Last equations in (6) follow from taking into account the 
fact that there are only ( 1)cN −  independent components in 

cN -system. Emphasize that exG∆  via the parameters listed 
in Table 2 depends on all binary interactions between solu-
tion components including a co-solvent (see Eq. (6)) that in-
fluences the carbon solubility through activity coefficients 
in Eq. (2) which represents the equilibrium condition of the 
reaction (1). Expressions of iγ  are substituted in Eq. (2) 
where the standard Gibbs’ energy of dissolved carbon ( )l

Cµ  
is defined from the equilibrium condition between the pure 
silicon melt and the SiC crystal 

( ) ( ) ( ) ( ) ( ){ }ˆ ˆˆ ˆln 1 ln .l s l
C SiC Si Si C C CRT x RT xµ = µ −µ − γ − + γ  

 (7) 

Here, ˆ Siγ , ˆCγ , and ˆCx  describe the Si-C solution. A temper-
ature dependence of the carbon solubility in the molten sil-
icon equilibrated with the silicon carbide are presented in 
Ref. [33] through dimensionless mass fraction 

Table 1. Lists of liquid binary alloys vs temperature and composition. 

 Temperature, K 

1700–1800 1800–1900 1900–2000 2000–2100 2100–2200 2200–2300 

M
ol

e 
fr

ac
tio

n 
of

 c
o-

so
lv

en
t a

dd
ed

 to
 si

lic
on

 m
el

t 

0.1–0.2 All co-solvents All co-solvents All co-solvents All co-solvents All co-solvents All co-solvents 
0.2–0.3 Fe, Co, Ni, Al, 

Sc 
All co-solvents All co-solvents All co-solvents All co-solvents All co-solvents 

0.3–0.4 Fe, Co, Ni, Al Fe, Co, Ni, Al, 
Cr 

Fe, Co, Ni, Al, 
Cr, Sc 

Fe, Co, Ni, Al, 
Cr, Sc, Y, La, 
Ce, Pr 

All co-solvents All co-solvents 

0.4–0.5 Fe, Ni, Al Fe, Ni, Al, Co Fe, Ni, Al, Co, 
Cr 

Fe, Ni, Al, Co, 
Cr, La, Ce, Pr, 
Nd 

Fe, Ni, Al, Co, 
Cr, La, Ce, Pr, 
Nd, Sc 

All co-solvents 

0.5–0.6 Fe, Ni, Al Fe, Ni, Al, Co Fe, Ni, Al, Co, 
La, Ce 

Fe, Ni, Al, Co, 
La, Ce, Pr, Nd, 
Cr 

Fe, Ni, Al, Co, 
La, Ce, Pr, Nd, 
Cr 

Fe, Ni, Al, Co, 
La, Ce, Pr, Nd, 
Cr, Y 

0.6–0.7 Fe, Co, Ni, Al Fe, Co, Ni, Al, 
La, Ce 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd, 
Cr 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd, 
Cr, Y 

0.7–0.8 Fe, Co, Ni, Al, 
La, Ce, Pr, Nd 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd, 
Cr, Y 

Fe, Co, Ni, Al, 
La, Ce, Pr, Nd, 
Cr, Y 

0.8–0.9 Co, Ni, Al, La, 
Ce, Pr, Nd 

Co, Ni, Al, La, 
Ce, Pr, Nd, Fe 

Co, Ni, Al, La, 
Ce, Pr, Nd, Fe, 
Y, Sc 

Co, Ni, Al, La, 
Ce, Pr, Nd, Fe, 
Y, Sc 

All co-solvents All co-solvents 
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28400ˆ 475.6exp .Cc
T

 = − 
 

 (8) 

Substituting ( )l
Cµ  in (2) for ( )l

Cµ  from (7), one obtains the 
final non-linear equation for calculating the carbon solu-
bility at arbitrary temperatures and compositions limited 
by corresponding liquidus curves 

( ) ( ) ( )ˆ ˆln ln ln 1Si Si C C Si CRT x RT x RT xγ + γ = γ −  
 

                                              ( )ˆ ˆln .C CRT x+ γ  (9) 

Eq. (9) is solved relative to the carbon mole fraction Cx  by 
iteration method with account of the mass action law ap-
plied to the chemical reaction (1). Roots of Eq. (9) give 
the carbon solubility as a function of temperature and 

composition. Note that Eq. (9) together with Eqs. (5), (6) 
and (8) is used in all further calculations of the carbon sol-
ubility (see Figs. 2 and 3). 

The model above is verified by comparing the calcula-
tions with measurements performed for three different so-
lutions considered in Ref. [17]: 60%Si-40%Cr, 40%Si-
60%Fe and 77%Si-23%Ti. The measured carbon solubil-
ity is plotted in Fig. 2 together with its estimate when SiC 
is dissolved in the respective solution. As seen from the 
plots, all calculated dependences fit fairly well with each 
other and are consistent with the measurements for Si-Fe 
and Si-Ti systems. However, there is a remarkable dis-
crepancy between estimates and measurements for Si-Cr 
solution. In this connection, the authors of Ref. [17] em-
phasize that in the experiment for a Si-Cr solution at 

Table 2. Binary interaction parameters of excess Gibbs energy description. 

( )( )
3

0

, 
kex k k

i j i j i j i j i j
k

G x x a b T x x− − −
=

∆ = + −∑  J·mole–1 

i–j 0 0;i j i ja b− −  1 1;i j i ja b− −  2 2;i j i ja b− −  3 3;i j i ja b− −  Refs. 

Cr–Si –119216.57; 16.11445 –47614.70; 12.17363 0.00; 0.00 0.00; 0.00 [17] 
Fe–Si –151127.73; 29.125 –33882.38; 2.5015 33954.71; 11.2555 21289.56; 0.865 [17] 
Si–Ti –255852.17; 21.874 25025.35; –2.0023 83940.65; –6.7152 0.00; 0.00 [17] 
Co–Si –183483.8; 34.80023 –3219.5; –15.28341 34241.7; 0.00 15579.7; 0.00 [18] 
Ni–Si –208402.55; 27.13099 –121913.40; 18.80198 0.00; 0.00 145580.2; –69.55691 [19] 
Si–Y –231878.58; 0.00 –22570.43; 3.00 75072.9; –26.56 0.00; 0.00 [20] 
Sc–Si –233581; –22.8 –25537; 0.00 71642; 0.00 0.00; 0.00 [21] 
Al–Si –11340.1; –1.23394 –3530.93; 1.35993 2265.39; 0.00 0.00; 0.00 [22] 
La–Si –220000; 20.0 21500; 0.00 11000; 0.00 0.00; 0.00 [23] 
Ce–Si –276530; 22.98 24173; 10.59 64797; 0.00 –20314.7; 0.00 [24] 
Pr–Si –290000; 30 18000; 0.00 65000; 0.00 0.00; 0.00 [23] 
C–Si 8700; 0.00 0.00; 0.00 0.00; 0.00 0.00; 0.00 [17] 
C–Cr –127957; –7.6695 79574; 0.00 86315; 0.00 0.00; 0.00 [17] 
C–Fe –124320; 28.5 19300; 0.00 49260; –19.0 0.00; 0.00 [17] 
C–Ti –141051; –39.5 0.00; 0.00 0.00; 0.00 0.00; 0.00 [17] 
C–Co –107940.6; 24.956 –9805.5; 0.00 0.00; 0.00 0.00; 0.00 [25] 
C–Ni –111479; 35.2685 0.00; 0.00 0.00; 0.00 0.00; 0.00 [26] 
C–Y –264500; –13.0 66000; 22.0 0.00; 0.00 0.00; 0.00 [27] 
Al–C 40861.02; –33.21138 0.00; 0.00 0.00; 0.00 0.00; 0.00 [28] 
C–La –259436.3; 30.0 –159860; 0.00 –44046.6; 0.00 0.00; 0.00 [29] 
C–Ce –268285.3; 22.2 –139372.9; 0.00 –24515.3; 0.00 0.00; 0.00 [24] 
C–Pr –206169.6; –29.9 –127621.8; 0.00 –26606.5; 0.00 0.00; 0.00 [29] 
C–Nd –268285.3; 22.227 132872.9; 0.00 –24515.3; 0.00 0.00; 0.00 [30] 

( )2 4 2 4 ,
2

ex SiNd
Si Nd Si Nd SiNd SiSi Si SiSiSiSi Si NdNd Nd NdNdNdNd Nd

ZG x x x x x x−∆ = ε + ε + ε + ε + ε  J·mole–1 

 SiNdε  ;SiSi SiSiSiSiε ε  ;NdNd NdNdNdNdε ε  SiNdZ   

Si–Nd –57739.2 + 8.368T –27196 + 10.46T; 
2092 – 5.0208T 

–12552 + 6.276T; 
3138 

6 [31] 

( ) ,ex
Sc C Sc C Sc Sc C C ScC Sc CG x x L x L x L x x−∆ = + +  J·mole–1 

 ScL  CL  ScCL    

Sc–C –92308.9 – 9.55968T –213713 – 9.55968T –104670  [32] 
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2073 K, the temperature decreased presumably within 
100 K after immersing a SiC plate. With account of this 
fact, the calculated curves satisfactorily reproduce the 
measured values although the solubility seems to be over-
estimated. Therefore, it can be assumed that the thermo-
dynamics of non-ideal solutions is acceptable for estimat-
ing the carbon solubility in other Si-Me systems. 

2.3. Carbon solubility in binary solutions Si-Me,  
Me = Cr, Fe, Co, Ni, Y, Al, La, Ce, Pr, Nd and Sc 

By applying the thermodynamic approach described in Sec-
tion 2.2, the carbon solubility was calculated for the binary 
solutions saturated with SiC at temperatures and composi-
tions varying in a wide range limited by liquidus curves. 
Fig. 3 shows the temperature dependence of carbon solubil-
ity at co-solvent percentages of 40, 50, 60 and 70 mol.%. 
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Fig. 3. Carbon solubility in binary liquid alloys equilibrated with SiC crystal vs temperature at co-solvent percentage of 40% (a), 50% (b), 
60% (c) and 70% (d). Limitations of liquidus curve are accounted for (see Fig.1). 

Fig. 2. Comparison of carbon solubility presented in Ref. [17] 
and independently calculated in the present work. 
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As it follows from the plots, the temperature elevation en-
hances the solubility, whereas its average level rises approx-
imately twice with co-solvent percentage. 

Two groups of high and low solubility can be distin-
guished. Silicon melt doped by Cr, La, Ce, Pr, Nd, Y and 
Sc is attributed to the first of them where depending on the 
solubility the co-solvents are approximately distributed in 
following sequence: 
- 40%: Y (> 1979 K), Pr (> 1889 K), Nd (> 1978 K),  

Ce (> 1987 K), La (> 1959 K), Cr (> 1698 K); 
- 50%: Pr (> 1942 K), Y (> 2155 K), Ce (> 1906 K), 

La (> 1902 K), Nd (> 1953 K), Cr (> 1814 K); 
- 60%: Pr (> 1809 K), Ce (> 1753 K), Y (> 2113 K), 

La (> 1793 K), Nd (> 1893 K), Sc (> 2317 K), 
Cr (> 1932 K); 

- 70%: Pr (> 1603 K), Ce (> 1527 K), La (> 1575 K), 
Y (> 2053 K), Nd (> 1678 K), Sc (> 2228 K), 
Cr (> 2028 K). 

Here, the liquidus temperature in parentheses is shown for 
each binary solution in accordance with the phase dia-
grams (see Section 2.1). Note that the addition of Y and 
especially Sc results in a raised melting point. This param-
eter increases with Cr percentage. On the contrary, the 
threshold value significantly decreases with elevating the 
doping by lanthanides, making them most promising 
fluxes. 

The rest of co-solvents manifests itself at high percent-
age. For instance, 70% of Fe, Co, Ni and Al can provide 
the solubility of 5–10% at temperature > 2300 K. 

Particular attention should be given to a slope of solu-
bility dependences on temperature. The larger is a slope, 
the steeper is a drop of solubility achievable between the 
C-crucible and SiC-seed in TSSG [1] and, hence, a higher 
growth rate. As it follows from comparing the plots in 
Figs. 3a, b, c and d, the variation in the slope with co-sol-
vent percentage is clearly manifested for lanthanides. The 
slope decreases gradually, while a rise in the solubility 
moderates. Sequentially, La possesses an advantage over 
Pr, Pr does over Ce, Ce does over Nd. Therein, Y and Cr 
turn out to be less preferable. Sc has a promising steep de-
pendence on temperature at its percentage of 60 and 70% 
(see Figs. 3c and d) but is extremely limited by its liquidus 
curve. As for other co-solvents, there is a sense in consid-
ering them at their elevated doping when providing a no-
ticeable solubility of carbon. Among them, Al demon-
strates an outstanding slope at temperature varying from 
2100 to 2400 K. 

2.4. Preliminary estimation of SiC growth rate 

The analysis above allows one to speculate that such be-
havior of the slopes can lead to saturation in the growth 
rate with doping. To get a deeper insight into the main 

trends within a simplified approach, SiC growth rate is cal-
culated between two parallel infinite plates playing a role 
of the C-crucible and the SiC-seed kept at different tem-
peratures. By taking into account for the mass transport 
only due to diffusion, the flux of carbon CJ  can be esti-
mated as 

, ,C seed C crucible
C C

C C
J D

−
= −ρ

∆
, (10) 

where ρ is the solution density, CD  is the diffusion coeffi-
cient of carbon, ,C seedC  and ,C crucibleC  are the equilibrium 
mass fractions of dissolved carbon at the seed and the cru-
cible, respectively; ∆ is the fitting parameter in meters. 
The solution density ρ is defined as 

1
,

1

1 .
cN

i seed

i i

C−

=

=
ρ ρ∑  (11) 

To evaluate the diffusion coefficient of carbon, the 
Stokes-Einstein-Sutherland equation for diffusion of 
spherical particles through a liquid with low Reynolds 
number [16,34] is applied 

6C
A C

RTD
N r

=
π η

, (12) 

where 266.023 10AN = ⋅  kmole–1 is the Avogadro number, 
Cr  is the radius of the spherical particle equal to 1267 10−⋅  m 

for the carbon atom [35], η is the viscosity coefficient of 
solution found according to the classic Arrhenius mixing 
rule for liquid mixtures [36] 

1

1
ln ln ,

cN

i i
i

x
−

=

η = η∑  (13) 

where iη  is the viscosity coefficient for i-th fluid compo-
nent when flowing as a pure fluid. 

Then, the SiC growth rate can be estimated as 

,SiC C
SiC

C SiC

M J
V

M
=

ρ
 (14) 

where CM  and SiCM  are the molecular weights of carbon 
and silicon carbide, respectively; 3220SiCρ =  kg·m–3 is the 
SiC crystal density. 

A large body of data on density and viscosity coeffi-
cient for the liquid silicon and the co-solvents investigated 
here were carefully analyzed in available literature. Their 
most reliable temperature dependences are collected in 
Tables 3 and 4. The sources corresponding to them are 
marked as first in reference list. Other sources remain as 
alternatives. Note that the temperature functions of density 
and viscosity coefficient are fitted in such a way as to 
agree their values (see third column of the tables) with 
those at melting point (see the second column) measured 
accurately enough in many cases. In addition, due to a lack 
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of unambiguous information, the viscosity coefficients for 
liquid Cr, Fe, Co, Ni and Si are found from treating the 
experimental results presented in Ref. [52] while only an 
approximate value for liquid Sc is managed to calculate by 
the method suggested in Ref. [53]. 

The densities and viscosity coefficients calculated from 
formulae in Tables 3 and 4 are shown in Figs. 4 and 5 as 
functions of temperature varying from melting points to 
2400 K. It follows from the plots that the density decreases 
linearly and gradually with temperature in the range of 
5000–8000 kg/m3 for Ni, Co, Fe, Cr and lanthanides, 
whereas Sc, Si and Al possess considerably lower density 
of 2000–3000 kg/m3. In this connection, Y mediates be-
tween Sc and La. 

Unlike the density, the viscosity coefficients exhibit 
a non-linear behavior. Cr turns out to be a most viscous 

co-solvent. Fe, Co and Ni follow Cr, demonstrating a 
steep drop in this property. Lanthanides form a separate 
group with a moderate dependence of viscosity on tem-
perature where La is a least viscous co-solvent. Al and Si 
possess the lowest viscosity coefficients. Y is interposed 
between Ni and La and shows a sharpest fall with tem-
perature varying from Y-melting point to 2400 K. Fi-
nally, Sc viscosity coefficient is higher than that of Pr 
and lower than that of Ni. 

The properties discussed above are introduced into 
Eqs. (11) and (13) to calculate the carbon flux and the SiC 
growth rate by using Eqs. (10) and (14) at temperature and 
Si-Me composition varying in a wide range. Obviously, 
within the simplified approach accounting for only the 
carbon diffusion, there can be no aim and no possibility to 
reproduce the available experiments. Nevertheless, by 

Table 3. Density of pure liquid substances. 

( ) ( ) ( )i i mi i miT T C T Tρ ⋅= ρ − −  

i , miT  K ( ) 3, kg/mi miTρ  3, kg/(m K)iC ⋅  References 

Cr 2180 6290 0.72 [37] 
Fe 1811 7034.96 0.926 [38]; [39], [37] 
Co 1768 7827 0.936 [40]; [39], [37] 
Ni 1728 7890 0.991 [41]; [39], [37] 
Y 1796 4150 0.21 [42]; [43] 
Sc 1814 2770 0.21052 [44]; [43] 
Al 933 2380 0.35 [37]; [38] 
La 1191 5940 0.61 [43]; [45], [46], [37] 
Ce 1068 6412.492 0.831 [47]; [48], [37] 
Pr 1204 6500 0.51 [46]; [43], [37] 
Nd 1294 6585 0.57 [45]; [43], [48], [37] 
Si 1685 2530 0.35 [37]; [49], [50], [40], [51] 

Table 4. Viscosity coefficient of pure liquid substances. 

( ) exp i
i i

BT A
RT

 η =  
 

 

i , miT  K , mPa smiη ⋅  , mPa siA ⋅  , kJ/moleiB  References 

Cr 2180 5.7 0.172772 63.368 [52]; [53], [54] 
Fe 1811 5.8667 0.184696 52.071 [52]; [53], [38], [54] 
Co 1768 5.18 0.1893374 48.64345 [52]; [53], [40], [54] 
Ni 1728 4.78 0.252614 42.244 [52]; [53], [54], [55] 
Y 1796 4.54 0.00287 110 [42] 
Sc 1814 2.65 0.23636 36.4514 [53] 
Al 933 1.38 0.2565 13.08 [53]; [38], [54] 
La 1191 2.66 0.2092 25.22 [53]; [46] 
Ce 1071 3.25 0.6748 13.97 [53]; [47], [54] 
Pr 1204 2.85 0.9359 11.18 [53]; [46] 
Nd 1294 3.19 0.351253 23.7357 [53]; [46] 
Si 1685 0.58 0.1187 22.25 [52]; [49], [50], [40], [54], [53], [56] 
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comparing one with other, the effect of different co-solvents 
and main trends are expected to be revealed. In this connec-
tion, to agree the calculations with experiment, the unde-
fined parameter ∆ in Eq. (10) is chosen to obtain the growth 
rate of 200 μm/h at 2100 K and 60%Si-40%Cr as shown in 
Ref. [1] and is kept the same for other compositions. 

Fig. 6 illustrates the estimated growth rate as a func-
tion of the co-solvent percentage at 2000, 2100, 2200 and 
2300 K, while for the sake of definiteness, the temperature 
drop between seed (top) and crucible (bottom) is set equal 
to 10 K. As seen from the plots, the growth rate increases 
noticeably with temperature for all co-solvent except for 
Ni with its lowest level (long dashed red) exceeding that 
in pure silicon melt (solid green) only at Ni-doping of 60% 
and higher. 

A similar behavior can be observed in the case of Sc 
(black solid). The growth rate here is predicted to be even 
lower than that in the silicon. It rises abruptly to ≈ 350 μm/h 
at 2300 K when Sc percentage becomes higher than 50%. 
Note that as it follows from Si-Sc liquidus line (see Fig. 1), 
2300 K is not enough to provide Si-Sc liquid solution at Sc 
percentage of 60–65%. 

Depending on temperature, 50–250 μm/h can be 
achieved at the addition of Fe (dashed dot dot red) and 
Co (dashed dot red) when their content becomes higher 
than 60%. In Si-Cr solution (solid red) the growth rate 
reaches a local maximum of 150–250 μm/h that slightly 
shifts to the left with Cr fraction. Y (dashed red) gives 
the growth rate considerably higher than that for the pre-
vious co-solvents. It peaks at about 35% Y and tops 
≈ 200 μm/h at 2000 K and ≈ 400 μm/h at 2300 K. 

As compared with others, lanthanides demonstrate 
highest growth rates. They are close to each other at La 
(solid purple) and Ce (dashed dot dot purple) and lower 

than that at Pr (dashed dot purple) when their percentage 
varies from 5 to 40%. In elevating the doping, the growth 
rate is saturated firstly at Pr, next at Ce and then at La. 
Therewith, La addition gives the greatest maximum in the 
growth rate while less amount of Pr and Ce is required for 
this. Note that the maximums shift a little bit to the left 
with temperature. In other words, to achieve the higher 
growth rate, the lower doping is needed at elevated tem-
peratures. As for Nd, the growth rate here (long dashed 
purple) exceeds those of La and Ce when the doping is 
limited by 30–40% and is considerably lower when it is 
higher. Unlike other co-solvents, the local maximum is 
less pronounced in the dependences at Nd as well as at Cr. 

Surprisingly, the growth rate increases monotonically 
with Al (solid blue) addition. It is remarkably lower than 
that of Cr, Nd, Ce, Pr, Y and La when the mole fraction of 
co-solvent does not exceed 40% and is predicted to 
achieve significant values at larger doping. 

The results obtained allow one to make up some pre-
liminary conclusions: 
- SiC growth rate increases with temperature in all cases 

considered; 
- normally, SiC growth rate begins to saturate at a certain 

mole fraction of co-solvent and can no longer be raised 
by elevating the doping, then it falls down; such behav-
ior is consistent with some experimental data mentioned 
in Ref. [1] for Si-Cr solution; 

- local maximum in the growth rate dependence on co-sol-
vent percentage shifts to the left with temperature; 

- on the contrary, SiC growth rate rises monotonically 
with Al-addition; 

- a maximum possible growth rate is predicted to be pro-
vided by La-addition, and further in decreasing order - 
by Pr, Ce, Y, Sc, Nd, Cr, Co, Fe and Ni; 
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Fig. 4. Density of pure substances in Si-Me liquid alloys, where 
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liquidus curve are accounted for (see Fig. 1). 
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- a higher growth rate is achieved at lower content of Pr, 
Y, Nd and Cr (<30%) than at La and Ce. 

From above comparison of growth rates, the most prom-
ising are La, Pr, Ce, Y, Nd and Cr. To support the specula-
tion, more realistic 2D simulation should be carried out. 

3. EXAMPLES OF 2D SIMULATION OF SiC TSSG 

CGSim software developed by STR Group [57] is em-
ployed for 2D simulation of SiC TSSG. Modeling analog 
of the reactor with the seed diameter of 18 mm is consid-
ered thereto. Its schematic is shown in Fig. 7. 

 Thermophysical properties of solid and gas blocks 
(Materials) are taken from STR data base [57] while those 

of melt are user-defined and collected in Tables 3–7. Note 
that the density and viscosity coefficients of solutions are 
calculated as described in Section 2.4 while their heat ca-
pacity ( pC ), thermal (λ) and electrical (σ) conductivity are 
given by following expressions from Refs. [77], [78] and 
[79], respectively, 

 
1

1
,

cN

p i pi
i

C x C
−

=

= ∑  (15) 

1

1
,

cN

i i
i

C
−

=

λ = λ∑  (16) 

1

1
.

cN

i i
i
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−

=

σ = σ∑  (17) 
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Fig. 6. Preliminary estimation of SiC growth rate in binary liquid alloys vs co-solvent percentage at seed temperature of 2000 K (a), 
2100 K (b), 2200 K (c) and 2300 K (d) for temperature drop of 10 K. Gap in some dependences results from limitations of liquidus 
curve (see Fig. 1). 
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Here piC , iλ  and iσ  are the heat capacity, thermal and 
electrical conductivity of i-th pure component in solu-
tion, respectively. 

By tuning the power of inductive heater, the coupled 
computation of heat and mass transport are carried out in 
such a way as to provide the target temperatures at points 
marked by “Top” and “Bottom” in Fig. 7.  

Table 6. Electrical resistivity of pure substances. 

i , miT  K , μΩ cmiR ⋅  Refs. 

Cr 2180 126 [67] 
Fe 1811 9.7; 138 [68]; [67] 
Co 1768 6.0; 115 [69]; [67] 
Ni 1728 63 + 0.0127T; 83 [37]; [67] 
Y 1796 57 [70] 
Sc 1814 55 [71] 
Al 933 24.2, 10.7 + 0.0145T; 24.8 [37]; [58] 
La 1191 138 + 0.065 (T – 1193); 

135 + (0.0170 + 1.48·10–6T)× 
(T – 1187) 

[72] 
 
[73] 

Ce 1068 127 + (0.0176 + 1.7·10–6T)× 
(T – 1070) 

[73] 

Pr 1204 70; 
139 + (0.0186 + 1.93·10–6T)× 
(T – 1207) 

[74] 
 
[73] 

Nd 1294 64; 
154 + (0.0144 + 1.13·10–6T)× 
(T – 1292) 

[75] 
 
[73] 

Si 1685 0.113T – 109 
0.113T – 113 

[57] 
[37] 

Table 5. Thermal conductivity of pure liquid substances. 

( )1 2i i i miC C T Tλ = + −  

i , miT  K 1 , W/m/KiC  2
2 , W/m/KiC  Refs. 

Cr 2180 46 0.0 [58] 
Fe 1811 36.349 0.0096207 [59] 
Co 1768 29.49359 0.08781 [60] 
Ni 1728 54.182 0.02097 [59] 
Y 1796 17.2 0.0 [61] 
Sc 1814 15.8 0.0 [62] 
Al 933 98 0.0 [58] 
La 1191 13 0.0 [63] 
Ce 1068 20.496667 0.0126614 [64] 
Pr 1204 25.082333 0.0111794 [65] 
Nd 1294 21.719799 0.0117000 [66] 
Si 1685 66.5 0.0 [57] 

Fig. 7. Schematic of simplified set-up for simulation of SiC TSSG by CGSim software. “Top” and “Bottom” in the schematic are 
points where target temperatures are preset. 
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As it follows from some experimental observations 
[80], SiC layer can cover the crucible wall due to the reac-
tion between liquid silicon and graphite. Consequently, 
carbon goes from the crucible wall and diffuses through 
SiC layer. This layer is dissolved, providing carbon 
spreading into the solution. The thickness of SiC layer is 
supposed to remain constant after the initial stage of 
growth process. Therefore, the expression of the dissolu-
tion rate of SiC layer is accepted the same as that of crystal 
formation. Then, the same boundary conditions can be set 
at both graphite wall and silicon carbide seed with differ-
ent kinetic constants. More detailed description can be 
found in CGSim manual [57]. 

The chemical model above is tuned by fitting the prob-
ability of carbon and silicon sticking at the seed and the 
graphite crucible to agree the computations with the ex-
perimental dependence of growth rate on the temperature 
drop between the top and the bottom [81]. The obtained 
results are illustrated in Fig. 8. Accounting for the lack of 
detailed information on the reactor design and the process 
conditions used by the authors of [81], the computations 
are reasonably consistent with the experiment. To collate 
the influence of various co-solvents, the same probability 
of sticking is set in all further computations. 

As an example, two typical distributions of tempera-
ture (left) and carbon mass fraction (right) in silicon melt 
doped by 40% Cr and 40% La are demonstrated in Fig. 9 
at top and bottom temperature of 2300 K and 2310 K, re-
spectively. To illustrate the pattern of melt flow, the ve-
locity vectors are plotted in the left part of the figure. Some 
difference in the distributions is due to that in properties 
of the considered solutions. As it can be seen, Si-La solu-
tion is heated up deeper and “hot tongue” from the cruci-
ble wall is longer than that for Si-Cr. Stagnation zones 
near the seed and the crucible bottom are predicted to be 
larger for Si-Cr solution that affects the distributions of 

carbon mass fraction. Slot-like non-uniformity in carbon 
distribution close to the center turns out to be more ex-
tended from the seed to the bottom for Si-La solution. On 
the other hand, the relative variation of carbon mass frac-
tion is lower in Si-Cr solution (1.2% vs 2.6%) in spite of 
the fact that its level is higher than that in Si-La solution 
(0.029 vs 0.018). Note that the sharp gradient of the mass 
fraction is located at the seed-melt interface whereas its 

Table 7. Molecular weight and heat capacity of pure liquid 
substances (taken from Ref. [76]). 

i , kg/kmoleiM  , J/mole/KpiC  

Cr 52 39.33 
Fe 56 46.024 
Co 59 40.501 
Ni 59 43.095 
Y 89 43.095 
Sc 45 44.225 
Al 27 31.748 
La 139 34.309 
Ce 140 37.698 
Pr 141 42.970 
Nd 144 48.785 
Si 28 27.196 Temperature drop between top and bottom, K
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Fig. 8. Comparison of SiC growth rate given in Ref. [81] and ob-
tained in the present work from 2D computations at bottom tem-
perature of 2313 K and temperature drop of 10, 20, 30, 40 K be-
tween top and bottom. 
 

Fig. 9. Temperature and carbon distribution in silicon melt 
doped by 40% Cr (a) and 40% La (b). Top and bottom tempera-
ture of growth crucible is 2300 K and 2310 K, respectively. Ar-
rows indicate the velocity vectors and illustrate the melt flow. 
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value is close to its maximum at the crucible wall and is 
approximately constant over the rest of the volume. Hence 
one can suppose that the crystal growth occurs under ki-
netic limitations despite high temperatures. Support for 
this comes also from the dependence in Fig. 8. 

Radial distributions of the growth rate are shown in 
Fig. 10 for 60%Si-40%Cr,La and 30%Si-70%Cr,La solu-
tions at the same temperature regime. As is seen from the 
plot, the growth rate is significantly higher at La-doping 
than that for Cr. In addition, in both cases the crystal sur-
face is expected to be rough at 40% doping while a prac-
tically convex crystal can be obtained by elevating Cr and 
La percentage to 70%. Note that the growth rate decreases 
with the doping considered. This agrees with the result 
presented in Section 2.4 (see Fig. 6) where the possible 
saturation in the growth rate is predicted. 

4. SUMMARY 

Sequential and comparative computational research is 
suggested to find out the effect of various co-solvents on 
SiC crystal growth rate from silicon melt. The information 
related is thoroughly analyzed and collected, including 
- phase diagrams; 
- interaction parameters in approximation of the excess 

Gibbs’ energy; 
- thermodynamic method of calculation of carbon solubil-

ity; 
- thermophysical properties and heat and mass transport co-

efficients; 
- kinetic chemistry at melt-solid surfaces. 

Limitations attributed to liquidus-solidus of 11 binary 
solutions are shown and taken into account for further 
computations. Carbon solubility is calculated at tempera-
ture and composition varying in a wide range. Most prom-
ising solutions are preliminarily revealed. The growth rate 
is estimated within the simplified approach. 2D problem 
is set by using CGSim software, and first 2D computations 
are carried out, demonstrating the applicability of the 
model. 

Further research is aimed at simulation and compari-
son of all binary solutions and analysis of results to opti-
mize the solvent design. 
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Численный анализ роста карбида кремния из расплава кремния, 
разбавленного Cr, Fe, Co, Ni, Y, Al, La, Ce, Pr, Nd и Sc. Часть 1 

А.Н. Воробьев1,2 
1 АО «ГРУППА СТР» – OOO «Софт-импакт», Большой Сампсониевский пр., 64 литера «Е», офис 603, Санкт-Петербург, 

194044, Россия 
2 НПО «Стекло и керамика», ул. Дудко, 3, Санкт-Петербург, 192029, Россия 

 

Аннотация. Влияние различных присадок на скорость роста кристаллического карбида кремния из растворов последова-
тельно анализируется в рамках численного подхода. Информация, относящаяся к проблеме, найдена в имеющейся литературе 
и тщательно переработана. Ограничения, связанные с линией плавления-затвердевания растворов, определены из фазовых 
диаграмм 11 бинарных систем и учитываются в расчётах растворимости углерода при изменении температуры и состава в 
широких пределах. Физические свойства и коэффициенты переноса собраны для предварительной оценки и сопоставления 
скоростей роста. Предсказывается их насыщение и последующее падение с увеличением содержания присадок. Формулиру-
ется двухмерная задача, и демонстрируются первые двухмерные расчёты. Показывается, что добавление лантана к расплаву 
кремния обеспечивает существенно большую скорость роста, чем при добавлении хрома. 

Ключевые слова: рост карбида кремния; расплав кремния; раствор; растворимость углерода; МРК (моделирование роста 
кристаллов) 


